Request demo


For example, the automotive industry is one of the largest markets for steel industry. Therefore, it must fulfill some specific requirements like enhancing the fuel efficiency and reducing the vehicle mass without sacrificing current strength and stiffness of the steels. Young’s modulus and internal friction data are key elements to investigate the defect interaction during the different manufacturing processes and their influence on the mechanical properties.

Application note: Internal friction analysis of defect interactions in press-hardened steels

Choi et al. used the impulse internal friction technique to study the aging behavior of the 22MnB5 PHS grade (containing 0.24 wt% C, 1.22 wt% Mn, and 20 ppm B) during the paint-baking process with a RFDA LTVP800 measurement setup. Specimens of different lengths were used to obtain a resonant frequency of 0.7 kHz ,1.2 kHz ,and 2.1 kHz. The peak parameters obtained at these three frequencies were used to calculate the activation energy corresponding to each damping peak.

The IF spectrum of the 22MnB5 PHS was obtained (a) in the as- quenched state, (b) after the paint bake-hardening simulation.

In fig. 1 the internal friction spectrum and the temperature dependence of Young’s modulus of die-quenched 22MnB5 PHS is shown. A thermally activated relaxation process gives rise to a peak in the IF spectrum. Four distinct Debye peaks, related to specific dislocation processes, can be observed with their specific activation energies and relaxation times. For example, the P3 peak (dislocation-enhanced Snoek (DES) peak) represent the interaction between interstitial C atoms and already existing kinks on non-screw dislocation segments.

In fig. 2 is clearly shown that the paint bake hardening after press hardening affected the DES type P3 peak significantly, as a result of the C diffusion to edge locations and their pinning effect on the dislocations by the suppression of kink formation, and the formation of transition carbide precipitates.

A tensile deformation increased again the height of the P3 peak. This may due to the introduction of new dislocations both edge and screw type, or the strain-induced transformation of a small volume fraction of retained austenite to fresh martensite.


  1. W.S.Choi et al., Internal-friction analysis of dislocation – interstitial carbon interactions in press-hardened 22MnB5 steel, Materials Science & Engineering, A639 (2015) 439–447.


Impulse Excitation Internal Friction Study of Retained Austenite in Ferrous Martensite.
Kim, J. H., Ju, Y. N., Kang, S., & De Cooman, B. C. (2018). Metallurgical and Materials Transactions A 49(11), 5235-5240.
High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique.
Tripathy, H., Raju, S., Hajra, R. N., & Saibaba, S. (2018). Metallurgical and Materials Transactions A 49(3), 979-989.
The in-situ mechanical spectroscopy and electric resistance study of WE43 magnesium alloy during aging.
Knapek, M., Minárik, P., Trojanová, Z., Kubásek, J., Hajek, M., Šmilauerová, J., … & Stráská, J. (2018). Journal of Alloys and Compounds 743, 646-653.
Comparison Of The Damping Properties Of The Compressor Valve Steels At Different Frequencies.
ElBsat, M. N., Wenzel, M. J., Asmus, M. J., Renovich, F., Misbrener, R., & Kummer, J. P. (2018).
Measurement of high temperature elastic moduli of an 18Cr-9Ni-2.95 Cu-0.58 Nb-0.1 C (Wt%) austenitic stainless steel.
Tripathy, H., Hajra, R. N., Sudha, C., Raju, S., & Saibaba, S. (2018, April). AIP Conference Proceedings (Vol. 1951, No. 1, p. 020009). AIP Publishing
Evaluation of fatigue performance of additively manufactured SS316 via internal damping.
Haghshenas, A., & Khonsari, M. M. (2018). Manufacturing letters 18, 12-15
Thermo-mechanical Material Characterization and Stretch-bend Forming of AA6016.
Odenberger, E. L., Caro, L. P., Åhlin, H., & Oldenburg, M. (2018, September). IOP Conference Series: Materials Science and Engineering (Vol. 418, No. 1, p. 012022). IOP Publishing.
Formability study of the third generation automotive medium-Mn steel.
Zheng, G., Chang, Y., Li, X., Wang, C., & Dong, H. (2018, August). In 2018 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 661-665).
Effect of the free surface on the fatigue crack front curvature at high stress asymmetry.
Oplt, T., Hutar, P., Pokorný, P., Náhlík, L., Chlup, Z., & Berto, F. (2019). International Journal of Fatigue 118, 249-261.
Influence of substitution of Fe by Co on structural and magneto-mechanical properties of Fe-27Ga alloy.
Jen, S. U., Bobrikov, I. A., Balagurov, A. M., Shih, C. Y., Cheng, W. C., Emdadi, A., … & Golovin, I. S. (2018). Materials Science and Engineering: B 236, 76-83.
Cyclic stress responses of a newly developed nickel-base superalloy at elevated temperatures.
Cui, L., Yu, J., Liu, J., & Sun, X. (2019). Journal of Alloys and Compounds 773, 250-263.
Thermal aging effects on microstructure, elastic property and damping characteristic of a eutectic Sn–3.5 Ag solder.
Gain, A. K., & Zhang, L. (2018). Journal of Materials Science: Materials in Electronics 29(17), 14519-14527.
Effects of Ni nanoparticles addition on the microstructure, electrical and mechanical properties of Sn-3Ag-0.5 Cu solder alloy Sn-Ag-Cu alloy.
Gain, A. K., & Zhang, L. (2019). Materialia 100234
High-temperature and humidity change the microstructure and degrade the material properties of tin silver interconnect material.
Gain, A. K., & Zhang, L. (2018). Microelectronics Reliability 101-110.
A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel.
Zheng, G., Li, X., Chang, Y., Wang, C., & Dong, H. (2018). Journal of Materials Engineering and Performance 27(2), 530-540.
Damage accumulation and crack initiation detection based on the evolution of surface roughness parameters.
Haghshenas, A., & Khonsari, M. M. (2018). International Journal of Fatigue, 107, 130-144.
Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials.
Hedayati, R., Ahmadi, S. M., Lietaert, K., Pouran, B., Li, Y., Weinans, H., … & Zadpoor, A. A. (2018). Journal of the Mechanical Behavior of Biomedical Materials.
On the plasticity mechanisms of lath martensitic steel
Jo, K. R., Seo, E. J., Sulistiyo, D. H., Kim, J. K., Kim, S. W., & De Cooman, B. C. (2017). Materials Science and Engineering: A,, 704, 252-261.
Utilizing Low‐Cost Eggshell Particles to Enhance the Mechanical Response of Mg–2.5 Zn Magnesium Alloy Matrix.
Parande, G., Manakari, V., Kopparthy, S. D. S., & Gupta, M. (2017). Advanced Engineering Materials.
Effect of Carbon on the Damping Capacity and Mechanical Properties of Thermally Trained Fe-Mn Based High Damping Alloys.
Choi, W. S., & De Cooman, B. C. (2017). Materials Science and Engineering: A.
The effect of grain size on the damping capacity of Fe-17wt% Mn.
Shin, S., Kwon, M., Cho, W., Suh, I. S., & De Cooman, B. C. (2017). Materials Science and Engineering: A , 683, 187-194.
Lanthanum effect on improving CTE, damping, hardness and tensile response of Mg-3Al alloy.
Kumar, A., Meenashisundaram, G. K., Manakari, V., Parande, G., & Gupta, M. (2017). Journal of Alloys and Compounds , 695, 3612-3620.
Behaviour of the Young's modulus at the magnetocaloric transition in La (Fe, Co, Si) 13.
Kaeswurm, B., Barcza, A., Vögler, M., Geiger, P. T., Katter, M., Gutfleisch, O., & Cohen, L. F. (2017). Journal of Alloys and Compounds , 697, 427-433.
Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder.
Gain, A. K., & Zhang, L. (2016). Journal of Materials Science: Materials in Electronics, 27(1), 781-794.
Tekumalla, S., Yang, C., Seetharaman, S., Wong, W. L. E., Goh, C. S., Shabadi, R., & Gupta, M. (2016). Journal of Alloys and Compounds, 689, 350-358.
The Effect of Grain Size on the Damping Capacity of Fe-17wt% Mn.
Shin, S., Kwon, M., Cho, W., Suh, I. S., & De Cooman, B. C. (2016). Materials Science and Engineering: A.
Variation and consistency of Young’s modulus in steel.
Chen, Z., Gandhi, U., Lee, J., & Wagoner, R. H. (2016). Journal of Materials Processing Technology, 227, 227-243.
Structure and mechanical properties in a powder-processed icosahedral-phase-strengthened aluminum alloy.
Watson, T. J., Gordillo, M. A., Cernatescu, I., & Aindow, M. (2016).Scripta Materialia, 123, 51-54.
Magnetic and magneto-mechanical properties of Fe 55 Co 19 Ga 26 alloy.
Jen, S. U., Cheng, W. C., Lin, Y. C., Chen, Y. Z., & Golovin, I. S. (2016). Materials Letters, 182, 72-74.
Internal friction analysis of lath martensite in press hardened steel.
Sulistiyo, D. H., Cho, L., Seo, E. J., & De Cooman, B. C. (2016). Materials Science and Technology, 1-14.
Internal-friction analysis of dislocation–interstitial carbon interactions in press-hardened 22MnB5 steel.
Choi, W. S., Lee, J., & De Cooman, B. C. (2015). Materials Science and Engineering: A, 639, 439-447.
Evolution of the elastic modulus of Zr–Cu–Al BMGs during annealing treatment and crystallization: Role of Zr/Cu ratio.
Idriss, M., Célarié, F., Yokoyama, Y., Tessier, F., & Rouxel, T. (2015). Journal of Non-Crystalline Solids, 421, 35-40.
Studies on Dynamic Elastic and Internal Friction Properties of Cu-Cr-Zr-Ti Alloy Between 25 and 650° C.
Saravanan, K., Sharma, V. M. J., Asraff, A. K., Narayanan, P. R., Sharma, S. C., & George, K. M. (2015). Journal of Materials Engineering and Performance, 24(12), 4721-4727.
Inverse characterization method for mechanical properties of strain/strain-rate/temperature/temperature-history dependent steel sheets and its application for hot press forming.
Kim, H., Kim, D., Ahn, K., Yoo, D., Son, H. S., Kim, G. S., & Chung, K. (2015). Metals and Materials International, 21(5), 874-890.
Structural, magneto-mechanical, and damping properties of slowly-cooled polycrystalline Fe 81 Ga 19 alloy.
Jen, S. U., Cheng, W. C., & Chiang, F. L. (2015). Journal of Alloys and Compounds, 651, 544-550.
A porous TiAl6V4 implant material for medical application.
Deing, A., Luthringer, B., Laipple, D., Ebel, T., & Willumeit, R. (2014). International journal of biomaterials, 2014.
Determination of elastic and damping properties for clossed-cell aluminium foams using Impulse Excitation Technique.
Voiconi, T., Marsavina, L., Linul, E., & Kováčik, J. (2014). Proceedings of XIIIth Youth Symposyum of Experimental Solid Mechanics, 141-145.
Magnesium powder injection moulding for biomedical application.
Wolff, M., Schaper, J. G., Dahms, M., Ebel, T., Kainer, K. U., & Klassen, T. (2014). Powder Metallurgy, 57(5), 331-340.
Elastic strain energy induced by epsilon martensitic transformation and its contribution to the stacking-fault energy of austenite in Fe–15Mn–xC alloys.
Lee, S. J., Han, J., Lee, C. Y., Park, I. J., & Lee, Y. K. (2014). Journal of Alloys and Compounds, 617, 588-596.
Impulse excitation internal friction study of dislocation and point defect interactions in ultra-low carbon bake-hardenable steel.
Jung, I. C., Kang, D. G., & De Cooman, B. C. (2014). Metallurgical and Materials Transactions A, 45(4), 1962-1978.
Effects of ceramic particles and composition on elastic modulus of low density steels for automotive applications.
Rana, R., & Liu, C. (2014). Canadian Metallurgical Quarterly, 53(3), 300-316.
Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V–PART 1: Material characterisation.
Odenberger, E. L., Hertzman, J., Thilderkvist, P., Merklein, M., Kuppert, A., Stöhr, T., … & Oldenburg, M. (2013). International journal of material forming, 6(3), 391-402.
The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6 C twinning-induced plasticity steel.
Jeong, K., Jin, J. E., Jung, Y. S., Kang, S., & Lee, Y. K. (2013). Acta Materialia, 61(9), 3399-3410.
Characterization and modeling of the elastic behavior of a XC68 grade steel used at high strain rates and high temperatures. In Key Engineering Materials (Vol. 554, pp. 1116-1124).
Tabourot, L., Balland, P., Vautrot, M., Hopperstad, O. S., Raujol-Veillé, J., & Toussaint, F. (2013). Trans Tech Publications.
Low-density low-carbon Fe–Al ferritic steels.
Rana, R., Liu, C., & Ray, R. K. (2013). Scripta Materialia, 68(6), 354-359.
High Temperature Thermal Expansion and Elastic Modulus of Steels Used in Mill Rolls.
Laptev, A., Baufeld, B., Swarnakar, A. K., Zakharchuk, S., & Van der Biest, O. (2012). Journal of materials engineering and performance, 21(2), 271-279.
Étude du comportement mécanique des matériaux dans des conditions étendues de vitesses et de températures: application à l'acier C68 dans le cas d'une opération de formage incrémental (Doctoral dissertation, Université Grenoble Alpes).
Vautrot, M. (2012).
Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy.
Odenberger, E. L., Oldenburg, M., Thilderkvist, P., Stoehr, T., Lechler, J., & Merklein, M. (2011). Journal of Materials Processing Technology, 211(8), 1324-1335.
Young’s modulus and damping in dependence on temperature of Ti–6Al–4V components fabricated by shaped metal deposition.
Swarnakar, A. K., Van der Biest, O., & Baufeld, B. (2011). Journal of materials science, 46(11), 3802-3811.
Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting.
Murr, L. E., Gaytan, S. M., Medina, F., Martinez, E., Martinez, J. L., Hernandez, D. H., … & Wicker, R. B. (2010). Materials Science and Engineering: A, 527(7), 1861-1868.